5278论坛

5278论坛 > 正文

【12月9日】马天水教授学术报告

发布时间:2025-12-09文章来源:张晓辉 浏览次数:

报告题目Bialgebras induced by special left Alia algebras

主讲人:马天水 教授(河南师范大学)

摘要Special left Alia algebras were introduced by Dzhumadil'daev in [J. Math. Sci. (N.Y.) 161(2009), 11-30] when studying the classification of algebras with skew-symmetric identity of degree 3. A special left Alia algebra (resp. coalgebra) $(A, [,]_{(f,g)})$ (resp. $(A, \Delta_{(F,G)})$) is constructed by a commutative associative algebra (resp. cocommutative coassociative coalgebra) $(A, \cdot)$ (resp. $(A, \delta)$) together with two linear maps $f, g: A\longrightarrow A$ (resp. $F, G: A\longrightarrow A$). We find that if $((A, \cdot), f)$ (resp. $((A, \delta), F)$) is a Nijenhuis associative algebra (resp. coassociative coalgebra) such that $f\circ g=g\circ f$ (resp. $F\circ G=G\circ F$), then $((A, [,]_{(f,g)}), f)$ (resp. $((A, \Delta_{(F,G)}), F)$) is a Nijenhuis left Alia algebra (resp. coalgebra). A bialgebraic structure, named Nijenhuis associative D-bialgebra and denoted by $((A, \cdot, \delta), f, F)$, for $((A, \cdot), f)$ and $((A, \delta), F)$ was presented in [J. Algebra 639(2024), 150-186]. In this talk, we investigate the bialgebraic structure, named Nijenhuis left Alia bialgebra and denoted by $((A, [,], \Delta), N, S)$, for a Nijenhuis left Alia algebra $((A, [,]), N)$ and a Nijenhuis left Alia coalgebra $((A, \Delta), S)$, such that Nijenhuis special left Alia bialgebra $((A, [,]_{(f,g)}, \Delta_{(F,G)}), f, F)$ can be induced by Nijenhuis commutative cocommutative associative D-bialgebra $((A, \cdot, \delta), f, F)$. We also provide a method to construct Nijenhuis operators on a left Alia algebra (resp. coalgebra).

报告时间2025年12月9日晚上7:00 - 8:00

报告地点:腾讯会议:646-670-027

报告人简介:马天水,河南师范大学数学与信息科学学院教授、河南省高等学校骨干教师、河南省一流本科课程《线性代数》负责人。 主要从事Hopf代数理论的相关研究,在Asian J. Math、J. Algebra、Algebr. Represent. Theory等SCI收录杂志发表论文50余篇。主持在研或完成国家自然科学基金面上项目、青年项目和欧盟FUSION 项目、河南省自然科学基金面上项目、中国博士后基金面上项目等。


关闭 打印责任编辑:吕瑞源

友情链接