会议日程
12.14日上午8:00-11:55 学术报告 (地点:5278论坛
5278论坛
304会议室) |
时间 |
主持人 |
报告人 |
题目 |
8:00-8:10 |
王培合 |
开幕式 |
8:10-8:45 |
姚正安 |
曹喜望 |
Optimal Linear Codes from Duals of Punctured Concatenated Codes |
8:45-9:20 |
朱士信
|
唐春明 |
具有乘性性质的密钥共享方案的新构造
|
9:20-9:55 |
周海燕 |
Analysis of Roth-Lempel Codes
|
9:55-10:10 |
茶 歇 |
10:10-10:45 |
符方伟 |
王丽萍 |
A Novel Asymmetric BSGS Algorithm under Homomorphic Encryption |
10:45-11:20 |
张俊
|
罗金权 |
Column Twisted RS Codes and MDS Codes from Elliptic Curves |
11:20-11:55 |
方伟军 |
Generalized Merge-Convertible Codes for Code Conversion into LRCs |
12.14日下午14:00-18:00 学术报告 (地点:5278论坛
5278论坛
304会议室) |
14:00-15:20 |
教师博物馆研学 |
15:20-15:55 |
施敏加 |
岳勤 |
Irreducible Factorizations of Polynomials $x^{p^k+1}-bx+b$ Over a Finite Field |
15:55-16:30 |
王小强 |
Symbol-pair Distances and Weight Distributions of Several Classes of Cyclic Codes |
16:30-16:40 |
茶 歇 |
16:40-17:25 |
闫统江 |
衡子灵 |
Hybrid Character Sums From Vectorial Dual-Bent Functions and Asymptotically Optimal Complex Codebooks With Small Alphabet Sizes |
17:25-18:00 |
吴严生 |
李成举 |
New Bounds of Linear Matrix Codes for the Rosenbloom-Tsfasman Metric and Optimal Constructions |
报告简介
报告题目:Optimal Linear Codes from Duals of Punctured Concatenated Codes
报告人:曹喜望
报告摘要: A code is called a punctured concatenated code if it can be obtained by puncturing a concatenated code at suitable coordinates. Based on this new concept, we construct several classes of optimal or almost optimal linear codes. There are two major contributions in our works. Let the inner code be an $ [n,m]_q $ linear code derived from the defining set $ D=\{d_1, d_2, \ldots, d_n\} $. On the one hand, by employing a maximum distance separable (MDS) code with dimension 2 over $ \Bbb F_{q^m} $ as the outer code, we propose two classes of linear codes with few weights. The duals of these codes are shown to be dimension-optimal with respect to the sphere-packing bound. On the other hand, let $ q=2 $, by choosing an MDS code with dimension 3 over $ \Bbb F_{2^m} $ as the outer code, we construct another class of linear codes. The parameters and weight distributions of these codes are completely determined. Furthermore, their dual codes are almost distance-optimal with respect to the sphere-packing bound.
专家简介:曹喜望,南京航空航天大学教授,博士生导师,在北京大学获得博士学位。主要研究方向是代数组合、编码与密码。在领域权威期刊发表学术论文近200篇,其中SCI检索论文170余篇。江苏省“青蓝工程”学术带头人,主持完成国家自然科学基金项目5项和省部级科研项目多项。2017年获得江苏省科学技术奖。
报告题目:具有乘性性质的密钥共享方案的新构造
报告人:唐春明(广州大学)
报告摘要:我们研究了密钥共享方案中线性码的乘性问题。针对无法用理想线性码实现某些存取结构的局限性,我们提出了最短线性码的概念,并给出了其系统性的构造算法。在此基础上,我们进一步定义了乘性的理想线性码与最短线性码,建立了乘性存在的充要条件,并通过实例验证了所提方法的有效性,与其它的方案相比,本文构造的乘性线性码具有更小的规模。
专家简介:唐春明,博士、教授,博士生导师,广州大学研究生院常务副院长、广东省信息安全技术重点实验室主任、教育部高等学校数学类专业教学指导委员会委员、国家一流本科专业(信息安全)建设点负责人、省教育厅科研创新团队带头人。目前是中国密码学会理事、中国数学会数学教育分会常务理事、广东省学位与研究生教育副理事长、广东省数学会副秘书长。主要研究领域为密码学及其应用,先后主持科技部重点研发计划项目课题和子课题项目各1项、国家自然科学基金项目9项、省部级重大项目30余项,获得国家级教学成果二等奖1项、省级教学成果二等奖2项,曾入选年度全球前2%顶尖“年度科学影响力排行榜”科学家。
报告题目:Analysis of Roth-Lempel codes
报告人:周海燕
报告摘要:Near maximum distance separable (NMDS) codes have been widely used in various fields such as communication systems, data storage, and quantum codes due to their algebraic properties and excellent error-correcting capabilities.This report focuses on Roth-Lempel codes and establishes necessary and sufficient conditions for them to be NMDS and further completely determine its weight distributions. Besides, we illustrate the linearly inequivalence of Roth-Lempel codes and NMDS codes of elliptic curve type when their corresponding code lenthts exceed $\frac{4(q+2\sqrt{q}+1)}{5}-1$. Finally we show that some special linear codes of elliptic-curve type are not equivalent to Roth-Lempel code C by Schur product.
专家简介:周海燕,南京师范大学,教授,博士生导师,研究领域为代数数论以及在信息安全中的应用,在国内外学术刊物Journal of Number Theory, Journal of Pure and Applied Algebra, Acta Arithmetica, Finite Fields and Their Applications等上发表了论文三十多篇,主持和参加国家自然科学基金7项,曾访问美国加州大学尔湾分校,加拿大Mcmaster大学,意大利国际理论物理中心,印度ICTS等国外高校以及学术机构。
报告题目:A Novel Asymmetric BSGS Algorithm under Homomorphic Encryption
报告人:王丽萍
报告摘要:Fully homomorphic encryption (FHE) allows arbitrary computations to be performed on encrypted data. Since leveled FHE schemes only support arithmetic operations, one of the most crucial issues is how to rapidly compute polynomial evaluations. The most famous Peterson-Stockmeyer algorithm, a recursive version of the Baby-Step Giant-Step (BSGS) algorithm, requires $\sqrt{2d}+O(\log d)$ non-scalar multiplications, where $d$ is the degree of the polynomial being evaluated. In this talk, we propose the Asymmetric BSGS Algorithm that, by utilizing set decomposition and lazy techniques, reduces the number of modulus and key switches to $O(d^{1/t})$, where $t\geq 3$ is a constant. This algorithm works on any leveled FHE and any polynomial, providing performance enhancements of up to 350% for degree-65536 polynomials when implemented on BGV.
专家简介:王丽萍,中国科学院信息工程所研究员、博士生导师,主要从事抗量子公钥密码和隐私计算研究,目前是中国密码学会学术工作委员会副主任,中国工业与应用数学学会编码密码及相关组合理论专业委员会秘书长。在多个国际重要期刊和会议上发表论文,主持国家自然科学基金面上项目四项,主持或参与国家重点研发、973重大专项等国家重要项目。
报告题目:Column Twisted RS Codes and MDS Codes from Elliptic Curves
报告人:罗金权
报告摘要:In this talk, we will discuss two classes of non RS type MDS codes. One is column twisted Reed-Solomon(TRS). The other is MDS codes from elliptic curves. We establish necessary and sufficient conditions for column TRS codes to be MDS codes. Moreover, we will construct MDS codes from elliptic curve with largest possible length. Consequently, these MDS codes are not equivalent to Reed-Solomon(RS) codes. For fixed odd prime power, these constructions have larger code lengths than previous constructions.
专家简介:罗金权,2001年本科毕业于浙江大学应用数学系,2007年博士毕业于清华大学数学科学系基础数学专业,研究方向为代数编码。2007年至2014年于扬州大学5278论坛
工作,期间曾在新加坡南洋理工大学和挪威卑尔根大学Selmer研究中心从事博士后研究。2014年至今在华中师范大学数学与统计学学院工作,教授,博士生导师。在编码理论、代数曲线等领域发表论文60余篇,主持或参与多项国家自然科学基金青年项目,面上项目和重点专项。
报告题目:Generalized Merge-Convertible Codes for Code Conversion into LRCs
报告人:方伟军
报告摘要:Maturana and Rashmi introduced a theoretical framework known as code conversion, which enables dynamic adjustment of code parameters according to device performance. In this talk, we focus exclusively on the bounds and constructions of generalized merge-convertible codes. First, we establish a new lower bound on the access cost when the final code is an $(r,\delta)$-LRC. This bound unifies and generalizes all previously known bounds for merge conversion, where the initial and final codes are either LRCs or MDS codes. We then construct a family of access-optimal MDS/LRCs convertible codes by leveraging subgroups of the automorphism group of a rational function field. It is worth noting that our construction is also per-symbol read access-optimal. Finally, using the parity-check matrix approach, we present a construction of access-optimal convertible codes that enable merge conversion from MDS codes to an $(r,\delta)$-LRC. To the best of our knowledge, this is the first explicit optimal construction of code conversion between MDS codes and LRCs.
专家简介:方伟军,山东大学网络空间安全学院教授,博士生导师。目前主要研究方向为代数编码、量子纠错码以及分布式存储编码等。在IEEE TIT、FFA、DCC以及ISIT等信息论与编码理论主流期刊与会议发表30余篇论文。主持国家自然科学基金面上项目和青年项目,作为学术骨干参与国家重点研发计划项目和青年科学家项目。获得山东大学齐鲁青年学者,入选山东省泰山学者青年专家人才计划。
报告题目:Irreducible Factorizations of Polynomials $x^{p^k+1}-bx+b$ Over a Finite Field
报告人:岳勤
报告摘要:In this paper, we investigate polynomials of the form $ f(x)=x^{p^k+1}-bx+b $, where $ 0\ne b\in\Bbb F_{p^n} $, $ p $ is a prime, and $ k $ divides $ n $. By introducing a new approach based on the projective general linear group, we show that the number of zeros of $ f(x) $ in $ \Bbb F_{p^n} $ belongs to $ \{0,1,2,p^k+1\} $, and provide explicit criteria on $ b $ for each case. We also count the number of such polynomials corresponding to each possible number of zeros. Moreover, for the cases where $ f(x) $ has at least one zero, we determine its complete irreducible factorization over $ \Bbb F_{p^n} $.
专家简介:岳勤,南京航空航天大学数学系教授,博士生导师。1996-1999中国科技大学数学系,博士,并获得中国科学院研究生院长优秀奖学金。主要研究方向为代数数论和编码密码理论,发表SCI论文150余篇,其中包括:J. Reine Angew. Math., Math. Z, IEEE Trans. Inform. Theory等刊物;多次获批科研基金项目,其中主持国家自然科学基金重点专项,国家自然科学基金面上项目5项和国际合作项目2项等。曾多次被邀请出境访学和学术报告。
报告题目:Symbol-pair Distances and Weight Distributions of Several Classes of Cyclic Codes
报告人:王小强
报告摘要:Motivated by high-density storage needs, symbol-pair codes were introduced by Cassuto and Blaum to address channels with overlapping symbol outputs. In this paper, we present a systematic study of two families of reducible cyclic codes under the symbol-pair metric. By employing analytical techniques rooted in cyclotomic numbers and Gaussian period theory over finite fields, we characterize the admissible symbol-pair weights of these codes. Significantly, we demonstrate that their minimum symbol-pair distances attain twice the minimum Hamming distances under specific algebraic constraints. Furthermore, we identify and rigorously determine the symbol-pair weight distributions for several three-weight code families. Notably, we construct a class of MDS symbol-pair codes that achieve optimal distance parameters by the puncturing technique. As supplementary contributions, the paper resolves several computational problems concerning generalized cyclotomic numbers, thereby enriching the mathematical foundation for code parameter analysis.
专家简介:王小强,湖北大学副教授,硕士生导师。2019年于华中师范大学获博士学位,2020-2021年于香港科技大学和湖北大学从事关于密码、代数编码方面的博士后工作。主持国家自然科学基金1项、在学术期刊IEEE TIT、DCC、FFA等发表论文40余篇。 2024年入选楚天英才计划和武汉英才计划。2025年获湖北省自然科学二等奖。
报告题目:Hybrid Character Sums From Vectorial Dual-Bent Functions and Asymptotically Optimal Complex Codebooks With Small Alphabet Sizes
报告人:衡子灵
报告摘要:Hybrid character sums are an important class of exponential sums which have nice applications in coding theory and sequence design. In this talk, we study a calss of hybrid character sums from the vectorial dual-bent functions and determine their complex modulus or explicit values under certain conditions. This generalizes some known results as special cases. We show that the hybrid character sums from vectorial dual-bent functions have very small complex modulus. As applications, three families of asymptotically optimal complex codebooks are constructed from vectorial dual-bent functions and their maximal cross-correlation amplitude are determined based on the hybrid character sums. The codebooks we construct have very small alphabet sizes. This enhances their appeal for implementation. Besides, all of the three families of codebooks have only two-valued or three-valued cross-correlation amplitudes.
专家简介:衡子灵,长安大学教授、博士生导师,博士毕业于南京航空航天大学,2017-2018年在香港科技大学从事博士后研究工作。主要研究代数编码理论和扩频序列设计等。主持国家自然科学基金项目两项。入选陕西省青年拔尖人才和长安大学“长安学者”拔尖人才。主持获得陕西省高等学校科学技术研究优秀成果奖一项。入选2021年和2025年World's Top 2% Scientists“年度科学影响力榜单”。
报告题目:New Bounds of Linear Matrix Codes for the Rosenbloom-Tsfasman Metric and Optimal Constructions
报告人:李成举
报告摘要:In this talk, we introduce our recent work on the bounds and optimal constructions of linear matrix codes for the Rosenbloom -Tsfasman metric. This is a joint work with Xinran Wang and Professor Ziling Heng.
专家简介:李成举,华东师范大学教授,博士生导师。研究方向为编码密码与信息安全,主持国家自然科学基金优青、面上、青年项目,入选上海市启明星、扬帆、晨光人才计划,获评2023“上海科技青年35人引领计划”。担任SCI期刊《Advances in Mathematics of Communications》编委。