2025.12.6 19:00--19:50 报告一: Introduction to the Method of A-Harmonic Approximation
报告简介:The method of A-harmonic approximation is a central technique for proving partial regularity of weak solutions to nonlinear elliptic systems. By freezing the coefficients and showing that the solution is “almost A-harmonic’’ on small balls, one can approximate it by a genuinely A-harmonic function, which satisfies optimal decay estimates. The method offers an elegant alternative to blow-up arguments in partial regularity theory.
2025.12.6 20:00--20:50 报告二: Optimal partial Hölder regularity of weak solutions for nonlinear sub-elliptic systems with a drift term on the Heisenberg group
报告简介:This talk will be mainly concerned with optimal partial Hölder regularity of weak solutions for nonlinear sub-elliptic systems with a drift term in divergence form on the Heisenberg group. On the basis of a generalization of the technique of A-harmonic approximation, we prove optimal partial Hölder continuity results for vector-valued solutions of the sub-elliptic systems under super-quadratic growth conditions, as well as sub-quadratic growth conditions, respectively. The primary model covered by our analysis is the non-degenerate sub-elliptic p-Laplacian system on the Heisenberg group.
报告人简介:王家林,赣南师范大学教授,博士生导师(兼职),研究生院副院长,首届赣南师范大学赣江英才,美国数学会特约评论员,江西省数学会理事,荣获江西省自然科学奖二等奖。主要从事偏微分方程理论及其应用研究。2014国家公派美国匹兹堡大学访学研究一年,合作导师为Juan J. Manfredi教授。目前,主持省级以上科研项目10余项(国家自然科学基金项目4项),在Adv.Nonlinear Anal.,ComptesRendus Math., Nonlinear Anal.,J. Math. Anal. Appl., Acta Math. Sci.上发表SCI检索论文30余篇。
报告地点:腾讯会议:650-733-553